Videos zu Quadratischen Gleichungen

Quadratische Gleichung online berechnen

Online-Rechner zum Lösen von quadratischen Gleichungen mit reellen und komplexen Lösungen. Siehe auch Lektion "Quadratische Gleichungen".

Link

Lösung mit p-q-Formel

Gib die Werte für die Koeffizienten der quadratischen Gleichung ein und der Rest wird automatisch berechnet.

Tipp: Tasten und für Wertänderungen

·x2 + ·x + =

Allgemeine Form:

als Graph plotten

Berechnung der Normalform:

Lösung mit p-q-Formel:

x1,2 = -(p2) ± √((p2)² - q)

Lösungen:

Quadratische Gleichung Rechner: Dies sind die Formeln zum Berechnen der Quadratischen Gleichung.

Quadratische Gleichung Programm Vorschau

Lösung mit a-b-c-Formel ("Mitternachtsformel")

Allgemeine Form:

Lösung mit a-b-c-Formel:

x1,2 = -b ± √b² - 4·a·c / 2·a

Lösungen:

Zum Kopieren für das Mathe-Forum:

x1,2 = (-b ± √(b² - 4·a·c)) / (2·a)

Diskriminante:

D = b² - 4·a·c

Linearfaktoren:

Satz von Vieta:

Alle Formeln auf einen Blick

Hier seht ihr die notwendigen Formeln zum Berechnen von Quadratischen Gleichungen:

Allgemeinform: a·x2 + b·x + c = 0

p = b/a und q = c/a

Normalform: x2 + p·x + q = 0

p-q-Formel: x1,2 = -(p2) ± √((p2)2 - q)

Diskriminante D = b2 - 4·a·c

Linearfaktorform: a·(x + (-x1))·(x + (-x2)) = 0

Satz von Vieta: p = -(x1 + x2)

Satz von Vieta: q = x1·x2

abc-Formel (Mitternatchtsformel): x1,2 = -b ± √(b2-4·a·c) / 2·a

Was ist eine Quadratische Gleichung?

Definition:

Eine quadratische Gleichung ist eine Gleichung der Form a·x² + b·x + c = 0, wobei a, b und c Koeffizienten genannt werden und reelle Zahlen sind. a·x² heißt quadratisches Glied, b·x lineares Glied und c konstantes Glied. Um eine quadratische Gleichung zu lösen, nutzt man häufig eins der beiden Lösungsverfahren: p-q-Formel oder a-b-c-Formel (auch Mitternachtsformel genannt). Eine quadratische Gleichung kann, sofern wir uns in der Zahlenmenge der Reellen Zahlen aufhalten, entweder 0, 1 oder 2 Lösungen haben. In den komplexen Zahlen haben wir stets 2 Lösungen, wobei diese auch den gleichen Wert haben können und damit zusammenfallen (doppelte Nullstelle). Der Grad der Funktion ist im Übrigen 2, da die höchste Potenz der Unbekannten 2 ist (x2).

Hilfreich zum Verstehen: Videos zum Lösen von Quadratischen Gleichungen

Wortherkunft

Das Wort "quadratisch" kommt von "Quadrat", was wiederum vom Lateinischen "quadrus", "quattor" stammt, das "vier" heißt. Dieser Begriff wurde wahrscheinlich gewählt, da die bedeutende Unbekannt quadriert wird. Zur Erinnerung: Bei einem Quadrat werden beide Seiten miteinander multipliziert, um die Fläche zu berechnen: A = a²

Weitere Arten von Quadratischen Gleichungen

Quadratische Gleichungen können verschiedene Formen aufweisen. Hier eine Übersicht:

Die Form a·x² + 0·x + c = a·x² + c = 0 nennt man eine quadratische Gleichung ohne lineares Glied. Man sagt reinquadratische Gleichung.
Die Form a·x² + b·x + 0 = a·x² + b·x = 0 nennt man eine quadratische Gleichung ohne konstantes Glied.
Die Form a·x² + 0·x + 0 = a·x² = 0 → x² = 0 ist ein Spezialfall der reinquadratischen Gleichung.
Die Form 1·x² + b·x + c = x² + b·x + c = 0 nennt man genormte quadratische Gleichung (sie entspricht damit der Normalform).
Eine Gleichung der Form 0·x² + b·x + c = b·x + c = 0 enthält kein x² mehr. Dies ist eine lineare Gleichung.

Diskriminante

Die sogenannte Diskriminante ergibt sich aus: D = b2 - 4·a·c oder mit der Normalform aus D = p2 - 4·q. Anhand des Wertes der Diskriminanten kann man erkennen, wie viele Lösungen es gibt (reelle Zahlen). Die Diskriminante kann positiv, Null oder negativ sein:

1. Positive Diskriminate (b² - 4ac > 0): Wir haben zwei Lösungen.

2. Diskriminate ist Null (b² - 4ac = 0): Wir haben eine Lösung.

3. Negative Diskriminate (b² - 4ac < 0): Wir haben keine Lösung.

Schreib uns deine Hinweise und Ideen

© Matheretter - Wir öffnen Dir die Augen

Über Uns | Impressum | Kontakt | Telefon +49 15753259437