# Lösungen: Kürzen von Brüchen II (Basis)

1. Bestimme die Zahl, die zum gekürzten Bruch führt:

a) $$\frac{2}{4}^{\bbox[#e1ffc1,5px]{:2}} = \frac{2\color{blue}{:2}}{4\color{blue}{:2}} = \frac{1}{2}$$

b) $$\frac{3}{6}^{\bbox[#e1ffc1,5px]{:3}} = \frac{3\color{blue}{:3}}{6\color{blue}{:3}} = \frac{1}{2}$$

c) $$\frac{6}{10}^{\bbox[#e1ffc1,5px]{:2}} = \frac{6\color{blue}{:2}}{10\color{blue}{:2}} = \frac{3}{5}$$

d) $$\frac{6}{9}^{\bbox[#e1ffc1,5px]{:3}} = \frac{6\color{blue}{:3}}{9\color{blue}{:3}} = \frac{2}{3}$$

e) $$\frac{12}{4}^{\bbox[#e1ffc1,5px]{:4}} = \frac{12\color{blue}{:4}}{4\color{blue}{:4}} = \frac{3}{1} = 3$$

f) $$\frac{3}{12}^{\bbox[#e1ffc1,5px]{:3}} = \frac{3\color{blue}{:3}}{12\color{blue}{:3}} = \frac{1}{4}$$

g) $$\frac{8}{16}^{\bbox[#e1ffc1,5px]{:8}} = \frac{8\color{blue}{:8}}{16\color{blue}{:8}} = \frac{1}{2}$$

h) $$\frac{10}{24}^{\bbox[#e1ffc1,5px]{:2}} = \frac{10\color{blue}{:2}}{24\color{blue}{:2}} = \frac{5}{12}$$

i) $$\frac{8}{28}^{\bbox[#e1ffc1,5px]{:4}} = \frac{8\color{blue}{:4}}{28\color{blue}{:4}} = \frac{2}{7}$$

j) $$\frac{25}{60}^{\bbox[#e1ffc1,5px]{:5}} = \frac{25\color{blue}{:5}}{60\color{blue}{:5}} = \frac{5}{12}$$

k) $$\frac{5}{25}^{\bbox[#e1ffc1,5px]{:5}} = \frac{5\color{blue}{:5}}{25\color{blue}{:5}} = \frac{1}{5}$$

l) $$\frac{10}{120}^{\bbox[#e1ffc1,5px]{:10}} = \frac{10\color{blue}{:10}}{120\color{blue}{:10}} = \frac{1}{12}$$