# Lösungen: Erweitern von Brüchen II (Erweitert)

1. Bestimme die Erweiterungszahl für die folgenden Brüche:

a)  $$\frac{1}{2}^{\bbox[#e1ffc1,5px]{ ·11}} = \frac{1\color{blue}{·11}}{2\color{blue}{·11}} = \frac{11}{22}$$

b)  $$\frac{5}{6}^{\bbox[#e1ffc1,5px]{ ·7}} = \frac{5\color{blue}{·7}}{6\color{blue}{·7}} = \frac{35}{42}$$

c)  $$\frac{1}{8}^{\bbox[#e1ffc1,5px]{ ·9}} = \frac{1\color{blue}{·9}}{8\color{blue}{·9}} = \frac{9}{72}$$

d)  $$\frac{4}{9}^{\bbox[#e1ffc1,5px]{ ·13}} = \frac{4\color{blue}{·13}}{9\color{blue}{·13}} = \frac{52}{117}$$

e)  $$\frac{1}{4}^{\bbox[#e1ffc1,5px]{ ·11}} = \frac{1\color{blue}{·11}}{4\color{blue}{·11}} = \frac{11}{44}$$

f)  $$\frac{6}{9}^{\bbox[#e1ffc1,5px]{ ·22}} = \frac{6\color{blue}{·22}}{9\color{blue}{·22}} = \frac{132}{198}$$

g)  $$\frac{9}{10}^{\bbox[#e1ffc1,5px]{ ·25}} = \frac{9\color{blue}{·25}}{10\color{blue}{·25}} = \frac{225}{250}$$

h)  $$\frac{2}{11}^{\bbox[#e1ffc1,5px]{ ·7}} = \frac{2\color{blue}{·7}}{11\color{blue}{·7}} = \frac{14}{77}$$

i)  $$\frac{3}{7}^{\bbox[#e1ffc1,5px]{ ·100}} = \frac{3\color{blue}{·100}}{7\color{blue}{·100}} = \frac{300}{700}$$

j)  $$\frac{1}{11}^{\bbox[#e1ffc1,5px]{ ·70}} = \frac{1\color{blue}{·70}}{11\color{blue}{·70}} = \frac{70}{770}$$

k)  $$\frac{12}{13}^{\bbox[#e1ffc1,5px]{ ·9}} = \frac{12\color{blue}{·9}}{13\color{blue}{·9}} = \frac{108}{117}$$

l)  $$\frac{2}{11}^{\bbox[#e1ffc1,5px]{ ·201}} = \frac{2\color{blue}{·201}}{11\color{blue}{·201}} = \frac{402}{2211}$$