Identität mit Additionstheorem beweisen

Identität mit Additionstheorem beweisen

Bei den Identitäten hatten wir unter anderem diese Identität kennengelernt:

cos(α) = sin(α + 90°)

In Worten: Der Kosinus ist nichts weiter als der Sinus um 90° verschoben.

Diesen Sachverhalt können wir nun mit Hilfe des Additionstheorems beweisen:

cos(α) = sin(α + 90°)

sin(α + 90°) = cos(α)

Additionstheorem:

sin(α + ß) = sin(α) · cos(ß) + cos(α) · sin(ß) | ß = 90°

sin(α + 90°) = sin(α) · cos(90°) + cos(α) · sin(90°)

sin(α + 90°) = sin(α) · 0 + cos(α) · 1

sin(α + 90°) = cos(α)

Fertig.

Nachweis für Sinuswerte größer 90° mit dem Additionstheorem

Wir hatten in den einführenden Lektionen zum Sinus gesagt, dass der Sinus auch für Winkel größer 90° definiert ist. Mit Hilfe der Additionstheoreme lässt sich dies ebenfalls nachweisen. Ein Beispiel:

sin(120°) = ?

sin(α + ß) = sin(α) · cos(ß) + cos(α) · sin(ß) | Werte wählen: a = 30° und ß = 90°

sin(30° + 90°) = sin(30°) · cos(90°) + cos(30°) · sin(90°)

sin(30° + 90°) = sin(30°) · 0 + cos(30°) · 1

sin(30° + 90°) = cos(30°) ≈ 0,866

sin(120°) ≈ 0,866

Nachweis für Sinuswerte über 90 Grad

  Schreib uns deine Hinweise