Die Identitäten

Die sogenannten Identitäten helfen uns bei verschiedenen Sachverhalten. Mit ihrer Hilfe können wir Sinus in Kosinus überführen, alle Sinus-/Kosinuswerte auf Winkel von 0° bis 90° zurückführen, rechnerisch weitere Winkel bestimmen, schwierige trigonometrische Gleichungen vereinfachen und auflösen.

Es gibt sehr viele Identitäten, wir lernen hier die grundlegenden Identitäten kennen. Hier eine Übersicht:

  1. sin(α) = cos(90° - α)
  2. cos(α) = sin(90° - α)
  3. sin(α) = cos(α + 90°)
  4. sin(α) = -sin(-α)
  5. cos(α) = cos(-α)
  6. sin(90° + α) = sin(90° - α)
  7. cos(90° + α) = -cos(90° - α)
  8. sin(α) = sin(α + 360°) und cos(α) = cos(α + 360°)

Das Programm "Einheitskreis: Identitäten für Sinus und Kosinus" zeigt euch die vorgenannten und weitere Identitäten auf. Dort seht ihr animiert/interaktiv, wie sich die Identitäten verhalten.

  Schreib uns deine Hinweise