Wissen: Intervalle

Was ist ein Intervall?

Das Wort „Intervall“ kommt vom Lateinischen intervallum und bedeutet Zwischenraum. Es stammt von inter vallos, was „zwischen den Pfählen“ bedeutet.

Für ein Intervall in der Mathematik können wir uns entsprechend vorstellen, dass wir einen "Pfahl" oder zwei "Pfähle" setzen, um einen Bereich festzulegen.

Intervall Beispiel

Wir können zwei Intervallgrenzen setzen, dann haben wir einen festen Bereich, das endliche Intervall. Zum Beispiel: Alle ganzen Zahlen von 2 bis 5.

Wir können aber auch nur eine Intervallgrenze setzen und eine Richtung, dann haben wir ein unendliches Intervall. Zum Beispiel: Alle ganzen Zahlen größer 4. Also von 4 bis positiv unendlich. Schreibweise: \( [4, ∞[ \) oder \( [4, ∞) \)

Intervall-Schreibweisen

Nachstehend sind die wichtigsten Intervallschreibweisen notiert:

1. abgeschlossenes Intervall: [a, b] → Alle Werte von a bis b sind enthalten.

2. offenes Intervall: ]a, b[ → Alle Werte zwischen a und b sind enthalten. a und b sind nicht enthalten.

3. halboffenes Intervall - linksoffen: ]a, b] → Alle Werte zwischen a und b sind enthalten. a ist nicht enthalten.

4. halboffenes Intervall - rechtsoffen: [a, b[ → Alle Werte zwischen a und b sind enthalten. b ist nicht enthalten.

5. unbeschränktes Intervall: ]-∞, ∞[

Komplette Übersicht aller Intervalle

Nachfolgend die komplette Übersicht aller Intervalle.

Schreibweise Alternativ Mengenschreibweise Bezeichnung Darstellung am Zahlenstrahl
]a, b[ (a, b) {x ∈ ℝ | a < x < b} offen
(a und b exklusive)
Intervall offen
[a, b] [a, b] {x ∈ ℝ | a ≤ x ≤ b} geschlossen
(a und b enthalten)
Intervall geschlossen
[a, b[ [a, b) {x ∈ ℝ | a ≤ x < b} halboffen
rechtsoffen
(a enthalten)
Intervall halboffen rechts
]a, b] (a, b] {x ∈ ℝ | a < x ≤ b} halboffen
linksoffen
(b enthalten)
Intervall halboffen links
]a, ∞[ (a, ∞) {x ∈ ℝ | a < x} offen
(a exklusive)
Intervall offen links
[a, ∞[ [a, ∞) {x ∈ ℝ | a ≤ x} geschlossen
(a enthalten)
Intervall offen rechts
]-∞, b[ (-∞, b) {x ∈ ℝ | x < b} offen
(b exklusive)
Intervall offen links
]-∞, b] (-∞, b] {x ∈ ℝ | x ≤ b} geschlossen
(b enthalten)
Intervall geschlossen links
]-∞, ∞[ (-∞, ∞) unbeschränkt
(alle reellen Zahlen)
Intervall unbeschränkt
  Schreib uns deine Hinweise