Umwandlung von Normalenform in Koordinatenform

Umwandlung von Normalenform in Koordinatenform

Wie dies geht, haben wir bereits in dem Text zuvor geklärt, vergleiche 4. Umwandlung von Parameterform in Koordinatenform. Hier noch einmal dargestellt:

Gegebene Normalenform:

((x | y | z) - (0 | 2 | -1)) · (-12 | -11 | -5) = 0
(X - A) · N = 0

Wir können ablesen:
A = (0 | 2 | -1)
N = (-12 | -11 | -5)

Mit dem Normalenvektor N und dem Vektor A können wir die Koordinatenform aufstellen:

Koordinatenform:

X · N = A · N
X · (-12 | -11 | -5) = (0 | 2 | -1) · (-12 | -11 | -5) | rechts das Skalarprodukt berechnen
(x | y | z) · (-12 | -11 | -5) = 0*(-12) + 2*(-11) + (-1)*(-5)
(-12)·x + (-11)·y + (-5)·z = -17
bzw.
-12·x - 11·y - 5·z = -17

  Schreib uns deine Hinweise