Zehnerpotenzen

Zehnerpotenzen

Zehnerpotenzen helfen uns, mit großen Zahlen einfacher zu rechnen. Wir müssen die Nullen nicht mehr "mitschleppen", sondern können direkter rechnen. Im Folgenden zeigen wir euch, wie das geht. Vorher müssen wir jedoch noch die Schreibweise für Zehnerpotenzen klären.

Schreibweise von Zehnerpotenzen

Im Folgenden lernt ihr, wie Zehnerpotenzen geschrieben werden. Achtet darauf, dass der Exponent immer die Anzahl der Nullen hinter der 1 angibt. Das müsst ihr euch unbedingt merken, denn diese Information macht das Rechnen sehr einfach:

1 = 100 (wir haben 0 Nullen hinter der 1)
10 = 101 (wir haben 1 Null hinter der 1)
100 = 102 (wir haben 2 Nullen hinter der 1)
1000 = 103 (wir haben 3 Nullen hinter der 1)
10000 = 104 (wir haben 4 Nullen hinter der 1)
usw.

Umschreiben mit Zehnerpotenzen

Jede Zahl kann mit Zehnerpotenz geschrieben werden. Dabei können wir grundsätzlich selbst festlegen, welche Zehnerpotenz wir wählen. Hier ein paar Beispiele:

5.000 = 5 · 1.000 = 5 · 103
5.000 = 50 · 100 = 50 · 102
5.000 = 500 · 10 = 500 · 101
5.000 = 5.000 · 1 = 5.000 · 100

Wählen wir eine weitere Zahl, die verschiedene Ziffern hat. Wir müssen hier darauf achten, dass das Komma stets an der richtigen Stelle gesetzt wird:

5.270 = 5,27 · 1.000 = 5,27 · 103
5.270 = 52,7 · 100 = 52,7 · 102
5.270 = 527 · 10 = 527 · 101
5.270 = 5.270 · 1 = 5.270 · 100

Als nächstes noch ein paar gemischte Beispiele, damit ihr ein besseres Gefühl für die Umformungen bekommt. Dabei formen wir so um, dass immer nur eine Zahl vor dem Komma stehen bleibt:

8.000 = 8·103
5.700 = 5,7·103
5.724 = 5,724·103
25.000 = 25·103 = 2,5·104
1.000.000 = 106
4.700.000 = 4,7·106
229.500.000 = 229,5·106 = 2,295·108

Zerlegen von Dezimalzahlen in Zehnerpotenzen

Nehmen wir die Zahl 24.752 auseinander. Da wir das Dezimalzahlensystem verwenden, wird jeder Stelle (jeder Ziffer) eine Zehnerpotenz zugeordnet. Unsere gewählte Zahl lässt sich in Summen und dann in Zehnerpotenzen zerlegen:

24.752 = 20.000 + 4.000 + 700 + 50 + 2
24.752 = 2·10.000 + 4·1.000 + 7·100 + 5·10 + 2·1
24.752 = 2·104 + 4·103 + 7·102 + 5·101 + 2·100

Oder mit den Stellen untereinander geschrieben:

2 4 7 5 2
· · · · ·
104 103 102 101 100

Rechnen mit Hilfe von Zehnerpotenzen

Insbesondere beim Multiplizieren von großen Zahlen helfen uns die Zehnerpotenzen weiter. Ein Beispiel wird das klar machen:

Wir sollen folgende Aufgabe berechnen: 124.000.000.000 · 3.000.000.000.000 = ?

Hier ist es sinnvoll, zuerst die Zahlen als Zehnerpotenzen umzuschreiben:

124.000.000.000 · 3.000.000.000.000 =
124·109 · 3·1012

Jetzt können wir die Faktoren sinnvoll sortieren und vorteilhaft verrechnen:

124·109 · 3·1012 =
124 · 3 · 109 · 1012 =
372 · 109 + 12 =
372 · 1021

Das Ergebnis könnten wir so stehen lassen, jedoch hat man für die wissenschaftliche Schreibweise von Potenzen festgelegt, dass man linksseitig vor dem Komma nur eine Stelle belässt. Hierfür müssen wir noch umformen:

372 · 1021 =
3,72·100 · 1021 =
3,72·102 · 1021 =
3,72 · 102+21 =
3,72 · 1023

Das Ergebnis der Aufgabe lautet also: 124·109 · 3·1012 = 3,72 · 1023

Wir könnten übrigens auch kürzer schreiben: 124·109 · 3·1012 = 1,24·1011 · 3·1012 = 3,72 · 1023

Kopfrechnen mit Zehnerpotenzen

Die Berechnung von 124.000.000.000 · 3.000.000.000.000 können wir im Kopf abkürzen. Für die Berechnung trennen wir die Nullen ab und zählen sie, wir kommen auf 21 Nullen und es bleibt stehen: 124 · 3. Dies können wir berechnen und erhalten 372. Nun schreiben wir die Nullen wieder heran, in dem Fall als Zehnerpotenz: 372·1021, fertig.

Vorteile beim Rechnen mit Zehnerpotenzen

Wie wir sehen, spart uns die Schreibweise mit Zehnerpotenzen sogar Zeit, weil wir nicht alle Nullen mitschreiben müssen. Außerdem machen wir weniger Fehler, da es beim Schreiben von mehreren Nullen dazu kommen kann, dass wir eine Null zu wenig oder zu viel notieren.

  Schreib uns deine Hinweise