AB: Kürzen von Brüchen I (Basis)

Beim Kürzen werden Zähler und Nenner des Bruches durch die gleiche Zahl dividiert.

Als Beispiel: \( \frac{10}{25} = \frac{10\color{blue}{:5}}{25\color{blue}{:5}} = \frac{2}{5} \)

Man kann die Zahl, mit der man kürzen möchte, auch hochgestellt schreiben:

Als Beispiel: \( \frac{10}{25} = \frac{10}{25}^{\color{blue}{:5}} = \frac{2}{5} \)

Versuche, dieses neue Wissen mit den folgenden Aufgaben zu testen.

1.

Kürze die folgenden Brüche durch die vorgegebenen Zahlen:

a)

\( \frac{2}{4}^{\color{blue}{:2}} = \) \( \frac{2}{4}^{\color{blue}{:2}} = \bbox[#e1ffc1,5px]{ \frac{2\color{blue}{:2}}{4\color{blue}{:2}} = \frac{1}{2} } \)

b)

\( \frac{2}{6}^{\color{blue}{:2}} = \) \( \frac{2}{6}^{\color{blue}{:2}} = \bbox[#e1ffc1,5px]{ \frac{2\color{blue}{:2}}{6\color{blue}{:2}} = \frac{1}{3} } \)

c)

\( \frac{8}{10}^{\color{blue}{:2}} = \) \( \frac{8}{10}^{\color{blue}{:2}} = \bbox[#e1ffc1,5px]{ \frac{8\color{blue}{:2}}{10\color{blue}{:2}} = \frac{4}{5} } \)

d)

\( \frac{6}{9}^{\color{blue}{:3}} = \) \( \frac{6}{9}^{\color{blue}{:3}} = \bbox[#e1ffc1,5px]{ \frac{6\color{blue}{:3}}{9\color{blue}{:3}} = \frac{2}{3} } \)

e)

\( \frac{9}{3}^{\color{blue}{:3}} = \) \( \frac{9}{3}^{\color{blue}{:3}} = \bbox[#e1ffc1,5px]{ \frac{9\color{blue}{:3}}{3\color{blue}{:3}} = \frac{3}{1} = 3 } \)

f)

\( \frac{3}{12}^{\color{blue}{:3}} = \) \( \frac{3}{12}^{\color{blue}{:3}} = \bbox[#e1ffc1,5px]{ \frac{3\color{blue}{:3}}{12\color{blue}{:3}} = \frac{1}{4} } \)

g)

\( \frac{4}{12}^{\color{blue}{:4}} = \) \( \frac{4}{12}^{\color{blue}{:4}} = \bbox[#e1ffc1,5px]{ \frac{4\color{blue}{:4}}{12\color{blue}{:4}} = \frac{1}{3} } \)

h)

\( \frac{8}{12}^{\color{blue}{:4}} = \) \( \frac{8}{12}^{\color{blue}{:4}} = \bbox[#e1ffc1,5px]{ \frac{8\color{blue}{:4}}{12\color{blue}{:4}} = \frac{2}{3} } \)

i)

\( \frac{4}{24}^{\color{blue}{:4}} = \) \( \frac{4}{24}^{\color{blue}{:4}} = \bbox[#e1ffc1,5px]{ \frac{4\color{blue}{:4}}{24\color{blue}{:4}} = \frac{1}{6} } \)

j)

\( \frac{5}{10}^{\color{blue}{:5}} = \) \( \frac{5}{10}^{\color{blue}{:5}} = \bbox[#e1ffc1,5px]{ \frac{5\color{blue}{:5}}{10\color{blue}{:5}} = \frac{1}{2} } \)

k)

\( \frac{15}{150}^{\color{blue}{:5}} = \) \( \frac{15}{150}^{\color{blue}{:5}} = \bbox[#e1ffc1,5px]{ \frac{15\color{blue}{:5}}{150\color{blue}{:5}} = \frac{3}{30} } \)

l)

\( \frac{5}{25}^{\color{blue}{:5}} = \) \( \frac{5}{25}^{\color{blue}{:5}} = \bbox[#e1ffc1,5px]{ \frac{5\color{blue}{:5}}{25\color{blue}{:5}} = \frac{1}{5} } \)

2.

Kürze die Brüche gemäß folgender Tabelle, falls sinnvoll möglich:

Kürze mit 2 mit 3 mit 4
a) \( \frac{2}{4} \) \( \frac{1}{2} \) nicht
kürzbar
nicht
kürzbar
b) \( \frac{4}{8} \) \( \frac{2}{4} \) nicht
kürzbar
\( \frac{1}{2} \)
c) \( \frac{8}{24} \) \( \frac{4}{12} \) nicht
kürzbar
\( \frac{2}{6} \)
d) \( \frac{12}{36} \) \( \frac{6}{18} \) \( \frac{4}{12} \) \( \frac{3}{9} \)

Name:  
Datum: