# AB: Kürzen von Brüchen I (Basis)

Beim Kürzen werden Zähler und Nenner des Bruches durch die gleiche Zahl dividiert.

Als Beispiel: $$\frac{10}{25} = \frac{10\color{blue}{:5}}{25\color{blue}{:5}} = \frac{2}{5}$$

Man kann die Zahl, mit der man kürzen möchte, auch hochgestellt schreiben:

Als Beispiel: $$\frac{10}{25} = \frac{10}{25}^{\color{blue}{:5}} = \frac{2}{5}$$

Versuche, dieses neue Wissen mit den folgenden Aufgaben zu testen.

1.

Kürze die folgenden Brüche durch die vorgegebenen Zahlen:

a)

$$\frac{2}{4}^{\color{blue}{:2}} =$$ $$\frac{2}{4}^{\color{blue}{:2}} = \bbox[#e1ffc1,5px]{ \frac{2\color{blue}{:2}}{4\color{blue}{:2}} = \frac{1}{2} }$$

b)

$$\frac{2}{6}^{\color{blue}{:2}} =$$ $$\frac{2}{6}^{\color{blue}{:2}} = \bbox[#e1ffc1,5px]{ \frac{2\color{blue}{:2}}{6\color{blue}{:2}} = \frac{1}{3} }$$

c)

$$\frac{8}{10}^{\color{blue}{:2}} =$$ $$\frac{8}{10}^{\color{blue}{:2}} = \bbox[#e1ffc1,5px]{ \frac{8\color{blue}{:2}}{10\color{blue}{:2}} = \frac{4}{5} }$$

d)

$$\frac{6}{9}^{\color{blue}{:3}} =$$ $$\frac{6}{9}^{\color{blue}{:3}} = \bbox[#e1ffc1,5px]{ \frac{6\color{blue}{:3}}{9\color{blue}{:3}} = \frac{2}{3} }$$

e)

$$\frac{9}{3}^{\color{blue}{:3}} =$$ $$\frac{9}{3}^{\color{blue}{:3}} = \bbox[#e1ffc1,5px]{ \frac{9\color{blue}{:3}}{3\color{blue}{:3}} = \frac{3}{1} = 3 }$$

f)

$$\frac{3}{12}^{\color{blue}{:3}} =$$ $$\frac{3}{12}^{\color{blue}{:3}} = \bbox[#e1ffc1,5px]{ \frac{3\color{blue}{:3}}{12\color{blue}{:3}} = \frac{1}{4} }$$

g)

$$\frac{4}{12}^{\color{blue}{:4}} =$$ $$\frac{4}{12}^{\color{blue}{:4}} = \bbox[#e1ffc1,5px]{ \frac{4\color{blue}{:4}}{12\color{blue}{:4}} = \frac{1}{3} }$$

h)

$$\frac{8}{12}^{\color{blue}{:4}} =$$ $$\frac{8}{12}^{\color{blue}{:4}} = \bbox[#e1ffc1,5px]{ \frac{8\color{blue}{:4}}{12\color{blue}{:4}} = \frac{2}{3} }$$

i)

$$\frac{4}{24}^{\color{blue}{:4}} =$$ $$\frac{4}{24}^{\color{blue}{:4}} = \bbox[#e1ffc1,5px]{ \frac{4\color{blue}{:4}}{24\color{blue}{:4}} = \frac{1}{6} }$$

j)

$$\frac{5}{10}^{\color{blue}{:5}} =$$ $$\frac{5}{10}^{\color{blue}{:5}} = \bbox[#e1ffc1,5px]{ \frac{5\color{blue}{:5}}{10\color{blue}{:5}} = \frac{1}{2} }$$

k)

$$\frac{15}{150}^{\color{blue}{:5}} =$$ $$\frac{15}{150}^{\color{blue}{:5}} = \bbox[#e1ffc1,5px]{ \frac{15\color{blue}{:5}}{150\color{blue}{:5}} = \frac{3}{30} }$$

l)

$$\frac{5}{25}^{\color{blue}{:5}} =$$ $$\frac{5}{25}^{\color{blue}{:5}} = \bbox[#e1ffc1,5px]{ \frac{5\color{blue}{:5}}{25\color{blue}{:5}} = \frac{1}{5} }$$

2.

Kürze die Brüche gemäß folgender Tabelle, falls sinnvoll möglich:

 Kürze mit 2 mit 3 mit 4 a) $$\frac{2}{4}$$ $$\frac{1}{2}$$ nichtkürzbar nichtkürzbar b) $$\frac{4}{8}$$ $$\frac{2}{4}$$ nichtkürzbar $$\frac{1}{2}$$ c) $$\frac{8}{24}$$ $$\frac{4}{12}$$ nichtkürzbar $$\frac{2}{6}$$ d) $$\frac{12}{36}$$ $$\frac{6}{18}$$ $$\frac{4}{12}$$ $$\frac{3}{9}$$

Name:
Datum: