abc-Formel (Mitternachtsformel)

Die abc-Formel, auch bekannt als „Mitternachtsformel“, ist eine Formel, mit der sich quadratische Gleichungen lösen lassen.

Allgemeine Form der quadratischen Gleichung:

\( \color{#00F}{a}·x^2 + \color{#F00}{b}·x + \color{#F90}{c} = 0 \)

Die abc-Formel zur Lösung:

$$ x_{1,2} = \frac{ -\color{#F00}{b} \pm \sqrt{ \color{#F00}{b}^2 - 4 · \color{#00F}{a} · \color{#F90}{c} } }{ 2 · \color{#00F}{a} } $$

Um die abc-Formel anwenden zu können, müssen wir die quadratische Gleichung in die allgemeine Form überführen, das heißt dort muss … = 0 stehen. Liegt diese dann vor, können wir die abc-Formel direkt anwenden.

Zur Lösungen nehmen wir die Koeffizienten a, b, c, die wir bei der quadratischen Gleichung ablesen, und setzen sie in die abc-Formel ein. Das berechnete Ergebnis ist die Lösung der quadratischen Gleichung (also die x-Werte).

Ein Beispiel soll dies veranschaulichen:

\( 3·x^2+3·x = 18 \)

Der erste Schritt, den es zu tun gilt, ist die 18 auf die linke Seite zu führen. Dafür wird auf beiden Seiten 18 subtrahiert.

\( 3·x^2+3·x = 18 \qquad |-18 \\ 3·x^2+3·x-18 = 0 \)

Nun wird die obige Formel herangezogen und eingesetzt. Es ist a = 3, b = 3 und c = -18.

$$ x_{1,2} = \frac{-b\pm\sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a} \quad | ~ a=3, ~ b=3, ~ c=-18 \\ x_{1,2} = \frac{-3 \pm \sqrt{3^2 - 4·3·(-18)}}{2·3} \\ x_{1,2} = \frac{-3\pm\sqrt{9+216}}{6} \\ x_{1,2} = \frac{-3\pm\sqrt{225}}{6} \\ x_{1,2} =\frac{-3\pm15}{6} $$

Nun das doppelte Vorzeichen berücksichtigen. Wir haben also zwei Lösungen, wobei bei jeder Lösung mit einem anderen Vorzeichen gerechnet wird.

$$x_1 = \frac{-3+15}{6} = \frac{12}{6} = 2$$ $$x_2 = \frac{-3-15}{6} = \frac{-18}{6} = -3$$

Schon haben wir die beiden Ergebnisse \(x_1 = 2\) und \(x_2 = -3\).

Die abc-Formel ist übrigens eine Alternative zur p-q-Formel.