Kosinussatz Einführung

Lesedauer: 2 min | Vorlesen

Der Sinussatz reicht nicht immer aus, um ein Dreieck lösen zu können. Für \( \frac{a}{\sin(α)} = \frac{b}{\sin(β)} \) haben wir zwei Varianten:

Variante A: Wir brauchen entweder 1 Seite (a) und 2 Winkel (α und β), um die andere Seite (b) zu bestimmen.

Variante B: Wir brauchen 2 Seiten (a, b) und 1 Winkel (α), um den anderen Winkel (β) zu bestimmen.

Was ist jedoch, wenn wir nur die Seiten a und c sowie Winkel β gegeben haben? Der Sinussatz sieht dann so aus (die gegebenen Werte sind blau gefärbt) und lässt sich nicht berechnen:

$$ \frac{ \color{blue}{a} }{ \sin(α) } = \frac{ b }{ \sin(\color{blue}{β}) } = \frac{ \color{blue}{c} }{ \sin(γ) } $$

Können wir eine Formel aufstellen, die nur a, c und den Winkel β enthält? Denn dann ließen sich die anderen Winkel bestimmen.

Die Antwort ist ja. Schauen wir uns an, wie sich diese Formel (der sogenannte Kosinussatz) ergibt.

  Hinweis senden