Hypotenuse, Gegenkathete und Ankathete

Vorab sei erwähnt, dass wir im Folgenden nur rechtwinklige Dreiecke betrachten. Ein Winkel im Dreieck muss also 90° groß sein, meist wird er als Gamma γ bezeichnet, damit sind die beiden anderen Winkel Alpha α und Beta β kleiner als 90°. Erinnert euch an den Winkelsummensatz: α + β + γ = 180° und wenn γ = 90°, dann α + β + 90° = 180° und α + β = 90°.

Vielen Schülern fällt der Einstieg in die Trigonometrie schwer, da sie schon bei den Bezeichnungen am Dreieck Schwierigkeiten haben. Klären wir also einfach auf:

Die längste Seite in einem rechtwinkligen Dreieck wird immer „Hypotenuse“ genannt (der Begriff bedeutet „die Ausgestreckte“). Die anderen beiden Seiten werden allgemein „Katheten“ genannt.

Dreieck mit Hypotenuse und Katheten

Jetzt kommt es darauf an, welchen Winkel α oder β wir uns betrachten. Je nach gewähltem Winkel kann jede Kathete entweder Ankathete oder Gegenkathete heißen.

Wählen wir uns Beta β aus, dann ergibt sich:

Dreieck mit Beta und Gegenkathete und Ankathete

Wir erkennen, dass die Seite, die dem Winkel β direkt gegenüber liegt, die Gegenkathete ist. Und dass die Seite, die dem Winkel β anliegt die Ankathete ist.

Wählen wir uns Alpha α aus, dann ergibt sich:

Dreieck mit Alpha und Gegenkathete und Ankathete

Wir erkennen, dass die Seite, die dem Winkel α direkt gegenüber liegt, die Gegenkathete ist. Und dass die Seite, die dem Winkel α anliegt die Ankathete ist.

Bedenkt, dass wir die Dreiecke auch drehen können und die Bezeichnungen dabei gleich bleiben:

Dreieck Ankathete Gegenkathete Animation

Merkt euch: An einem Winkel liegen stets Ankathete und Hypotenuse an. Die Gegenkathete berührt den Winkel nie!

Der längsten Seite, der Hypotenuse liegt immer der rechte Winkel gegenüber. Bzw. dem rechten Winkel liegt immer die längste Seite gegenüber.

  Hinweis senden