Lektion F02: Lineare Funktionen - Einführung

Inhalte:

Laut Lehrplan: 7. - 8. Klasse

Mathe-Videos

Nachdem ihr jetzt verstanden habt, wie das Kartesische Koordinatensystem funktioniert, legen wir gleich richtig los! Es folgt die Einführung zu den Linearen Funktionen. Viel Spaß mit dem Lernvideo.

- Funktionsgleichung in Normalform f(x) = m·x + n, Lineare Gleichung, Schnittpunkt mit y-Achse, Steigung und Steigungsdreieck
- Funktion aus 2 Punkten ermitteln und Funktionsgleichung aufstellen (Schnittpunkt mit y-Achse und Steigung), Achsenschnittpunkte ermitteln
- Funktionsgleichung und konstante Funktion, Nullstelle und Nullstellenberechnung, senkrechter Funktionsgraph

Mathe-Programme Lineare Funktion

In dem folgenden Koordinatensystem könnt ihr selbst die Steigung betrachten. Bewegt die Maus und ihr seht die Abstände für x und y und die sich ergebende Steigung m - das ist der Wert, der vor dem x steht. Die Werte können auf ganze Zahlen gerundet werden. Dazu unten links im Programm "Werte runden" aktivieren.

  • Steigung eines linearen Graphen
    Steigung eines linearen Graphen
    Bewegt die Maus und seht die Abstände für Breite (grün) und Höhe (blau) und die sich ergebende Steigung m (der Wert, der vor dem x steht).

Zugriff auf alle Programme

Da der Graph (die rote Linie) durch den Koordinatenursprung (0 | 0) geht, können wir die einfache Form von f(x) = m·x verwenden. Wann wir die Form f(x) = m·x + n benutzen, erfahrt ihr in der nächsten Lektion.

  Hinweis senden