Termumformung mit binomischen Formeln

Die binomischen Formeln sind bereits bekannt. Sie seien hier nochmals aufgeführt:

1. (a+b)² = a² + 2ab + b²

2. (a-b)² = a² - 2ab + b²

3. (a+b)·(a-b) = a² - b²

Die binomischen Formeln sind ein weiteres mächtiges Werkzeug, um Terme zu vereinfachen oder Gleichungen zu lösen. Eine Aufgabenstellung hierzu könnte lauten: Vereinfache den folgenden Term mittels der binomischen Formeln.

$$\frac{4 - 9}{2 - 3}$$

Hier ist es knifflig, eine binomische Formel zu erkennen. Doch schreibt man 4 = 2² und 9 = 3², dann erkennt man im Zähler die dritte binomische Formel, also das a² - b², und kann schließlich mit dem Nenner kürzen.

$$\frac{4-9}{2-3} = \frac{2^2-3^2}{2-3} = \frac{(2+3)(2-3)}{(2-3)} = 2+3 = 5$$

Lasst uns den Wert wieder ohne binomische Formel überprüfen:

$$\frac{4-9}{2-3} = \frac{-5}{-1} = 5$$

Die binomischen Formeln, insbesondere die dritte binomische Formel, stellen eine Bereicherung an Hilfsmittel dar, mit der Terme einfach gekürzt werden können. Ein weiteres Beispiel:

$$\frac{4x^2-1}{2x+1}$$

Es ist sehr wichtig zu erkennen, dass 1 = 1² ist, denn nur dann versteht man, dass sich hier die dritte binomische Formel verbirgt: 4x²-1 = 2·2·x·x - 1·1 = 2·x·2·x - 1·1 = (2x)² - 1² = (2x+1)·(2x-1). Damit ergibt sich also:

$$\frac{4x^2-1}{2x+1} = \frac{(2x+1)\cdot(2x-1)}{(2x+1)} = 2x-1$$

Und wiederum haben wir einen Term vereinfacht, der zuerst den Anschein vermittelt hatte, nicht gekürzt werden zu können.

  Hinweis senden