Linearfaktoren

Der gerade erwähnte „Satz vom Nullprodukt“ ist sehr hilfreich, wenn man eine Funktion in Linearfaktoren aufschreiben will. Denn die Linearfaktordarstellung ist nichts weiter als die Aneinanderreihung der Nullstellen.

Wird die Aufgabe gestellt, die Linearfaktordarstellung von f(x) = x²+2x-3 anzugeben, so kann man die Nullstellen mit der pq-Formel oder der quadratischen Ergänzung errechnen. Diese seien hier zu x1 = -3 und x2 = 1 bestimmt. Damit lautet die Linearfaktordarstellung der Funktion:
f(x) = x²+2x-3 = (x+3)·(x-1)

Man beachte, dass, wenn man nun die Nullstellen einsetzt, das Produkt jeweils 0 ist. Also aufpassen, dass man die Nullstellen im Vorzeichen „gedreht“ einsetzt.

Weiterhin ist Vorsicht geboten, wenn man von beispielsweise f(x) = 3x²+6x-9 die Nullstellen bestimmen soll. Wir hatten die Aufgabe ja oben bereits gelöst und zur Anwendung der pq-Formel zuvor durch 3 dividiert. Das muss bei der Angabe der Linearfaktoren berücksichtigt werden. Die Nullstellen waren ja: x1 = 1 und x2 = -3. Damit ergibt sich nun für die Linearfaktordarstellung:
f(x) = 3·x²+6·x-9 = 3·(x+3)·(x-1)

Der Vorfaktor ist dabei leicht zu erkennen, es ist der Vorfaktor zugehörig zu dem x².

  Hinweis senden