TRI03: Sinussatz und Kosinussatz

Inhalte:

Voraussetzung:
Laut Lehrplan: 9. - 10. Klasse

Mathe-Videos

In der vorigen Lektion haben wir Sinus und Kosinus kennengelernt. Diese können wir nun benutzen, um allgemeine Dreiecke zu berechnen. Hierzu nutzen wir den Sinussatz und den Kosinussatz, die wir in den Videos herleiten. Auch stoßen wir beim allgemeinen Dreieck auf Winkel über 90° bis 180°, für die wir ebenfalls Sinus- und Kosinuswerte bestimmen können.

Sinus+Kosinus bei Dreiecken - Kosinussatz inkl. Herleitung

Herleitung des Kosinussatzes mit Hilfe vom Satz des Pythagoras und dem Kosinus. Bei gegebenen 2 Seiten und eingeschlossenem Winkel kann mit dem Kosinussatz die 3. Dreiecksseite bestimmt werden. Eselsbrücke fürs leichtere Merken der Formel.

Weitere Videos stehen dir als Kunde zur Verfügung:

  • TRI03-1 Sinus+Kosinus bei Dreiecken - Sinussatz
    Herleitung vom Sinussatz, Berechnen von Beispielen im allgemeinen Dreieck, Seiten und Winkel bestimmen mit Hilfe des Sinussatzes: a / sin(α) = b / sin(β) = c / sin(γ)
  • TRI03-2 Sinus+Kosinus bei Dreiecken - Sinus u. Kosinus bis 180 Grad
    Höhe des Allgemeinen Dreiecks als Gegenkathete, Sinus-Werte von 90° bis 180°, Identitäten sin(α) = sin(180-α), cos(α) = -cos(180-α), Anwendung Sinussatz am stumpfwinkligen Dreieck.
  • TRI03-4 Sinus+Kosinus bei Dreiecken - Kosinussatz über Flächen
    In diesem Video leiten wir den Kosinussatz über die Flächenformel her. Abschließend zeigen wir, unter welchen Umständen aus dem Kosinussatz der Satz des Pythagoras wird.
  • TRI03-5 Sinus+Kosinus bei Dreiecken - Kosinussatz Winkel berechnen
    Anwendung des Kosinussatzes zur Dreiecksberechnung, Ermittlung des unbekannten Winkels aus 3 Dreiecksseiten, Zusammenfassung und Falleinteilung, wann der Sinussatz oder der Kosinussatz anzuwenden ist.

  Alle Videos ab 24,99 €/M.

Nachdem ihr die Videos gesehen habt, könnt ihr euer neues Wissen mit den Lernprogrammen testen.

Mathe-Programme

  • Sinus und Kosinus (Allgemeines Dreieck)
    Sinus und Kosinus (Allgemeines Dreieck)
    Mit der Dreieckshöhe als Gegenkathete können wir Sinus und Kosinus im allgemeinen Dreieck anwenden. Wir nutzen ein Referenzdreieck für Winkel über 90 Grad am Halbkreis sowie Identitäten.
  • Sinussatz zur Dreiecksberechnung
    Sinussatz zur Dreiecksberechnung
    Mit diesem Programm können beliebige Dreiecke mit Hilfe des Sinussatzes berechnet werden. Hierzu sind nur 3 Werte anzugeben. Zusätzlich können Höhen und Fläche angezeigt werden.
  • Kosinussatz zur Dreiecksberechnung
    Kosinussatz zur Dreiecksberechnung
    Mit diesem Programm können beliebige Dreiecke mit Hilfe des Kosinussatzes berechnet werden. Hierzu sind nur 3 Werte anzugeben. Zusätzlich können Höhen und Fläche angezeigt werden.
  • Sinus und Kosinus im 1. Quadrant
    Sinus und Kosinus im 1. Quadrant
    Lernt die Werte für Sinus und Kosinus von 0 bis 90 Grad. Der Wert für Sinus steht an der Gegenkathete, der Wert für Kosinus an der Ankathete. Nutzt auch die Koordinaten des Punktes auf dem Kreisbogen.
  • Sinus und Kosinus im 2. Quadrant
    Sinus und Kosinus im 2. Quadrant
    Die Werte für Sinus und Kosinus von 90 bis 180 Grad können hier gelernt werden. Der Wert für Sinus ist die Länge der Gegenkathete, der Wert für Kosinus die Länge der Ankathete.
  • Sinussatz am Dreieck berechnen
    Sinussatz am Dreieck berechnen
    Einfach die Wert für das Dreieck eingeben, alle Ergebnisse werden automatisch berechnet. Sinussatz ist a/sin(α) = b/sin(β) = c/sin(γ)

  Zugriff auf alle Programme

Übungsaufgaben

Aufgabenblätter

Hier findest du 2 Aufgabenblätter, mit denen du dein Wissen testen kannst.

  Wissen nachschlagen
Tags: Trigonometrie, Sinus und Kosinus, Allgemeines Dreieck, Sinussatz und Kosinussatz, Dreiecksberechnung
  Schreib uns deine Hinweise

Made with ❤ by Matheretter.de