Gleichnamige Brüche

Lesedauer: 5 min | Vorlesen

Wir hatten bereits gelernt, was Brüche sind und wie wir Brüche erweitern und kürzen können. Im Folgenden betrachten wir, was gleichnamige Brüche sind und wie wir sie miteinander vergleichen können.

Der Begriff „gleichnamig“ meint, dass die Brüche den gleichen Nenner haben.

Beispiele: \( \frac{1}{3}, \frac{2}{3}, \frac{7}{3} \) ← Alle Brüche haben den selben Nenner mit 3.

Gleichnamige Brüche vergleichen

Bei gleichnamigen Brüchen ist das Vergleichen ihrer Werte relativ einfach, da wir bereits gleiche Nenner vorliegen haben. Das heißt, wir müssen nur die Zähler miteinander vergleichen.

Vergleichen wir beispielsweise \( \frac{1}{8} \) mit \( \frac{3}{8} \), sehen wir, dass 1 kleiner ist als 3. Wir schreiben also \( \frac{1}{8} \lt \frac{3}{8} \).

Vergleichen wir beispielsweise \( \frac{4}{7} \) mit \( \frac{1}{7} \), sehen wir, dass 4 größer ist als 1. Wir schreiben also \( \frac{4}{7} \gt \frac{1}{7} \).

Bei gleichen Brüchen setzen wir bekanntermaßen das Gleichheitszeichen: \( \frac{1}{5} = \frac{1}{5} \)

Brüche gleichnamig machen

Brüche gleichnamig zu machen heißt, einen gemeinsamen Nenner zu bilden.

Dabei können wir die Zahl finden, die beide Nenner zusammen als erstes „erreichen“ (vgl. kleinstes gemeinsames Vielfaches) oder wir bilden einen Nenner, der beliebig groß sein kann.

Beispiel: Gemeinsamen Nenner durch Erweitern bilden

Machen wir die beiden folgenden Brüche gleichnamig:

\( \frac{1}{2} \text{ und } \frac{1}{3} \)

Den gemeinsamen Nenner finden wir, indem wir die Nenner beider Brüche multiplizieren: \( 2·3 = 6 \). Wir erweitern die Brüche also entsprechend, um den Nenner 6 zu bilden:

\( \frac{1}{2} → \frac{1 \color{#00F}{·3}}{2 \color{#00F}{·3}} = \frac{3}{ \color{#F00}{6}} \text{ und } \frac{1}{3} → \frac{1 \color{#00F}{·2}}{3 \color{#00F}{·2}} = \frac{2}{\color{#F00}{6}} \)

Damit sind die Brüche gleichnamig: \( \frac{3}{6} \text{ und } \frac{2}{6} \)

Jetzt erkennen wir auch, dass \( \frac{1}{2} \left( \frac{3}{6} \right) \) größer ist als \( \frac{1}{3} \left( \frac{2}{6} \right) \).

Beispiel: Gemeinsamen Nenner durch Kürzen bilden

Es kann vorkommen, dass wir kürzen können, um einen gemeinsamen Nenner zu finden:

\( \frac{7}{10} \text{ und } \frac{30}{20} \)

Den gemeinsamen Nenner finden wir, indem wir den zweiten Bruch im Beispiel auf den Nenner 10 bringen, indem wir den Bruch kürzen:

\( \frac{30}{20} → \frac{30 \color{#00F}{:2}}{20 \color{#00F}{:2}} = \frac{15}{10} \)

Damit sind die Brüche gleichnamig: \( \frac{7}{10} \text{ und } \frac{15}{10} \)

Jetzt erkennen wir auch, dass \( \frac{7}{10} \) kleiner ist als \( \frac{30}{20} \left( \frac{15}{10} \right) \).

  Hinweis senden